Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
What is biodiversity? Biodiversity is the variety of living species that can be found in a particular place, for instance the number of coral species on your coral frame. Coral reefs are said to have the highest biodiversity of any ecosystem on the planet—even more than a tropical rainforest. In this particular image you can see two species of the Acropora genus, one of the fastest growing species of coral. Since we collect broken fragments from the bottom and not original colonies, the biodiversity on the frames is often between 1 and 4 species of corals, depending on location of collection. You will see that these small pieces have already grown quite a bit in the one year since construction. Of course we always try to keep the diversity high between all of the frames and during maintenance we often add new pieces onto the frame. Hopefully soon we will see lots of different marine species occupying your frame, which is the goal of our Coral Conservation Project.
Looking at this species of Acropora on your frame, you will notice the white tips on the branches. When corals are stressed by changes in water conditions such as temperature, light intensity, or nutrients, they expel the symbiotic algae called Zooxanthellae, living inside their tissues, causing them to turn completely white, this is also known as coral bleaching. When a coral bleaches, it is not dead yet, but may soon starve if conditions persist, since the animals inside rely on this algae for its energy. If their stress levels are not severe, corals may recover. If the algae loss is prolonged and the stress continues, coral eventually dies. Here in the Maldives, the peak temperature is around March – June, when we also see some of the corals turn white, usually their colors return soon after if conditions don’t persist.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
This is your 6 month frame progress update. Unfortunately your frame is struggling!
Looking at your frame, we can notice lots of bleached corals as well as dead coral fragments. Unfortunately the warm months of March, April and May have been really rough on your frame. We are trying our best to keep the damage to a minimum by cleaning harmful algae off bleached corals. We also started moving extremely bleached frames under the Water Villa Restaurant to protect them from further damage through UV radiation. We hope to see some of your bleached corals recover over the next couple of months, but it will be a slow process. Now that the water temperatures are slightly decreasing the next step of action will be to replace dead coral fragments with new healthy fragments.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
Humans get a sun tan – corals become more colourful.
Coral reefs for the most part appear to be static environments, despite the presence of ever busy fish life, that is because most of the activities happening within corals are invisible to our eyes. In fact, coral reefs are a dynamic environment where every cm2 may hide beauty or a fight for survival! Among the invisible, corals are surely the most active, by building the amazing structure which allow us to see paradise tropical islands! However, they are continuously fighting for the survival, against predators, disease and environmental changes, and even between them. They are supplied with microscopic needles and venomous tentacles to kill any other corals and ejecting their stomach to digest them. The battle-zones when two different corals are easy to spot, there is often a cleared band between the two where they’ve killed each other off. They use similar tactics when they are fighting off invading algae. On healthy reefs, corals can maintain their territory, often beating back and even killing various types of algae. Here you will notice the two types ….
Just look at this interesting lizard-looking like fish we found near your frame. This is called a speckled sand perch (Parapercis hexophtalma) and is common in the Indo Pacfic Ocean. They can reach a length of up to 29 cm and they are easily recognized by the black marking on the tail. They are often found living on sand and rubble bottoms of shallow lagoon and areas with protected reefs and we see them quite often staying underneath the coral frames. They are predators feeding mainly on small invertebrates and crustaceans but occasionally also small fish. Like many other fish in the ocean, they are also hermaphrodites, which mean starting their adult life as females and changing sex to males. Not only do the fish change sex, but they also change their markings at the same time. When doing the maintenance on the frames, they like to stay around just in case a small piece of food falls to the sand.
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
Looking at your frame, we can often see these “black mats” forming on the frame or on the corals, in this case, the steel bar to the left. This is commonly known as red slime algae, also frequently found in aquariums. This in fact is not algae, but rather an oxy-photosynthetic bacterium which have dominated marine environments for more than three million years, commonly known as cyanobacteria. Usually corals can prevent algal settlement on the live tissue, however newly settled recruits or broken fragments and juveniles seem to be the most vulnerable due to their small size and vulnerability to physio-logical challenges. Tissue death can often follow due to the exposure of hypoxic, sulfide-rich microenvironments that is associated with this bacterium. During frame maintenance we remove these with a toothbrush to minimize any association with the fragments.
We always have some fun by doing maintenance on the coral frames. Every time by approaching a coral frame in order to clean it from invasive algae or to remove coral predators there are always wrasses that would come and inspect and quickly feed on the small pieces that float around. They are also helping to clean the frames by picking on algae and all other small animals they can find during the maintenance. This is an example of collaboration for a mutual benefit; this is what we call teamwork!