Here we would like to give some information about this nice looking Pocillopora meandrina branches collected from a broken colony that is located on your coral frame. They are also known as the cauliflower coral and are quite common around the Maldives. Pocillopora meandrina occurs on shallow reefs and amongst coral communities on rocky reefs, at depth from 3-27 m and their radiating branches can reach up to 40 cm in diameter. In this species many or most of the branches are flattened on the ends and some may be curved and their colors may vary from cream, green or pink. Pocilloporid corals, not excluding P. meandrina, are generally amongst the strongest coral competitors with relatively high rates of calcification. However, coral species exhibiting high rates of calcification usually have relatively high mortality rates
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Look what we found hiding in one of the corals on your frame. This is a red coral crab (Trapezia cymodoce), a small and necessary symbiont of living branching hard corals such as Acropora corals (Acropora sp.) and Cauliflower corals (Pocillopora sp.). They are well hidden and quick, and thus hard to spot and photograph. They have a small flat body, no wider than 1cm with pointed pincers in the front and can vary from red to dark orange. Within these corals, they receive needed protection from predation and also feed on the mucus that is produced by hard coral; this they gather with minute comb-like structures on the tips of their feet. In return, the coral gets a cleaner of excess sediment and also a guardian to fend of coral predators such as Crown-of-Thorns starfish by nipping the sensitive tube feet of the starfish. Usually in one coral colony you can find a pair of male and female with the latter being larger and the males having claws that are proportionally larger. These crabs are definitely worth having around on your frame
The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living in the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed through a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reason (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
This is your 6 month frame progress update. Your frame is doing fantastic!
Looking at your frame, we can see lots of new growth, especially of the acropora corals (the branching & fast growing corals). We can see some of the corals are competing for space, which is a good problem to have, it means your frame is thriving. We can also see that your frame is contributing to the overall health of the coral ecosystem. We see lots of life such as little fish, crabs, worms and mollusks around your frame. Overall your frame has survived the warm months of March, April and May just fine, unfortunately some of the other frames in our colony weren’t so lucky.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
What is biodiversity? Biodiversity is the variety of living species that can be found in a particular place, for instance the number of coral species on your coral fame. Coral reefs are said to have the highest biodiversity of any ecosystem on the planet—even more than a tropical rainforest. In this particular image you can see two species of the Acropora genus, one of the fastest growing species of coral. Since we collect broken fragments from the bottom and not original colonies, the biodiversity on the frames is often between 1 and 4 species of corals, depending on location of collection. You will see that these small pieces have already grown quite a bit since in the one year since construction. Of course we always try to keep the diversity high between all of the frames and during maintenance we often add new pieces onto the frame. We will soon see that lots of marine life occupying your frame and this is what we are aiming for with our coral conservation project.
Here we would like to give some information about this nice looking Pocillopora meandrina branches collected from a broken colony that is located on your coral frame. They are also known as the cauliflower coral and are quite common around the Maldives. Pocillopora meandrina occurs on shallow reefs and amongst coral communities on rocky reefs, at depth from 3-27 m and their radiating branches can reach up to 40 cm in diameter. In this species many or most of the branches are flattened on the ends and some may be curved and their colors may vary from cream, green or pink. Pocilloporid corals, not excluding P. meandrina, are generally amongst the strongest coral competitors with relatively high rates of calcification. However, coral species exhibiting high rates of calcification usually have relatively high mortality rates. Here you can also see some smaller fish hiding in the corals which is really good for the biodiversity
Why are coral reefs so important? For once, coral reef are said to be one of the most diverse ecosystem on the planet and provide shelter and habitat for many marine organisms. Furthermore coral reefs take an integral part in nitrogen and carbon fixing and are a source of essential nutrients for the marine food web. But not just marine organisms benefit from coral reefs, they also play a crucial role in protecting the coastline from wave action, tropical storms and coastal erosion. Economically coral reefs are important to foster healthy and abounded fishing grounds, tourism as well as the creation of soil and solid substrate for construction.
Look what we found hiding in one of the corals on your frame. This is a red coral crab (Trapezia cymodoce), a small and necessary symbiont of living branching hard corals such as Acropora corals (Acropora sp.) and Cauliflower corals (Pocillopora sp.). They are well hidden and quick, and thus hard to spot and photograph. They have a small flat body, no wider than 1cm with pointed pincers in the front and can vary from red to dark orange. Within these corals, they receive needed protection from predation and also feed on the mucus that is produced by hard coral; this they gather with minute comb-like structures on the tips of their feet. In return, the coral gets a cleaner of excess sediment and also a guardian to fend of coral predators such as Crown-of-Thorns starfish by nipping the sensitive tube feet of the starfish. Usually in one coral colony you can find a pair of male and female with the latter being larger and the males having claws that are proportionally larger. These crabs are definitely worth having around on your frame
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.), it is very common in the Indo-Pacific area; but don’t worry, it’s not a threat for corals, they can live together in peace, however when they increase their biodiversity on the frames they are removed to minimize competition with corals. Ascidia is a filter-feeder, this means that it filters water looking for plankton to feed itself. The green color is given by some little green algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
Given enough time, the coral frames may become home for many species of fish. For instance, these Dascyllus aruanus, a common species of damselfish, can be found living in the healthy branching Pocillopora on your frame where they protect themselves from predators. They can also be found in large groups in other coral species such as Acropora. Damselfishes usually feed on zooplankton, benthic invertebrates and sometimes algae. Damselfishes are very territorial, especially when protecting their nest. The male invites the female to spawn in the coral and then they take care of the eggs until hatching. Eggs hatch after 3-5 days and larvae feed on plankton.