Do you know that even under the water we can find cobwebs? The invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can expand around the individual up to 10 cm in diameter. Waves and currents fill the net with tiny particles. After a few hours the mollusk will inhale the net with all of its yummy goods caught inside.
Do you know that even under the water we can find cobwebs? The invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can expand around the individual up to 10 cm in diameter. Waves and currents fill the net with tiny particles. After a few hours the mollusk will inhale the net with all of its yummy goods caught inside.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
A fresh scar from a broken branch, the white indicate the calcium skeleton underneath that is produced by the tiny polys above year after year. Since collected fragments are picked up rather than broken down from existing colonies they often have dead sections covered with overgrowing algae and dead or damaged polyps, as such these sections are removed for faster recovery. You can already see the new polyps starting to grow along the bottom of the scar, soon the branch will regrow into its former state.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
This is your 6 month frame progress update. Unfortunately your frame is struggling!
Looking at your frame, we can notice lots of bleached corals as well as dead coral fragments. Unfortunately the warm months of March, April and May have been really rough on your frame. We are trying our best to keep the damage to a minimum by cleaning harmful algae off bleached corals. We also started moving extremely bleached frames under the Water Villa Restaurant to protect them from further damage through UV radiation. We hope to see some of your bleached corals recover over the next couple of months, but it will be a slow process. Now that the water temperatures are slightly decreasing the next step of action will be to replace dead coral fragments with new healthy fragments.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing minor signs of bleaching of around 20%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame varies from fragment to fragment and range anything between minor bleaching on the branching tips, surface bleaching (those directly exposed to the sun’s rays) and intermediate bleaching (still some symbiotic algae present but pale in color)
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Look at this amazing visitor to your frame! These are just a few of the species that would often visit the coral frames and are extremely helpful at times when cleaning the frames. This species is called the Moon Wrasse (Thalassoma lunare) a very typical and brightly colored species of fish found in the Maldives. It belongs to the wrasse family which consists of over 600 described species that range on average around 20 cm although the Humphead and Napoleon wrasse can grow up to 2 meters! They are carnivores by nature, feeding on a wide range of small invertebrates such as crabs or snails. Many smaller wrasses follow the feeding trails of larger fish, picking up invertebrates disturbed by their passing.
The coral on your frame is thriving. The fragments attached at the beginning are growing very well and is now almost fused together and is almost indistinguishable as you can see from this digitate Acropora. Here we applied the micro-fusion technique that has been described by the Mote Marine Laboratory in Florida. It is said that when putting small broken fragments of the same species/colony close to each other they can stimulate the fusion of these fragments and as a result speed up their growth rate. When doing coral frame restoration or maintenance we usually apply this technique when we find a huge broken colony. We cut off small branches and then we attach them very close to each other as you can see here.
Have you ever wondered how corals are eating and defending themselves… look closely and you will see small extensions/tentacles at each of the polyps. They are referred to as the defensive/offensive stinging mechanisms similar to sweeper tentacles and often linked to their feeding. Inside each of the polyps is the small animal that looks similar to an upside down jellyfish with the tentacles that surrounds the mouth part. They will move around to collect anything that passes around in the water, usually small plankton. They will then maneuver it towards their mouth where the food will be passed down. These tentacles are also used for defending themselves against predators such as parrotfish or other invader species such as crabs or small invertebrates. These tentacles are seldom seen which makes this a really amazing image
How do corals grow bigger? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
Corals rely on stable environmental conditions and abiotic factors, such as light, UV irradiation, water temperature, oxygen and nutrients in the water. Recently, scientific community focused on the effect of climate change on corals, such as the increase of water temperature. Indeed, the annual ocean surface temperature has already increased by 0.6 °C since preindustrial era, and, unfortunately, future projection says that it will increase by at least another 2 °C by 2100. This is a bad news for global coral reefs, since the increase of temperature is the main stressor leading to coral bleaching. This is prone to happen when corals evict their symbiotic algae which is crucial for their survival, as such they will turn completely white.