Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
Humans get a sun tan – corals become more colourful.
The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
Do you know that even under the water we can find cobwebs? The invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can expand around the individual up to 10 cm in diameter. Waves and currents fill the net with tiny particles. After a few hours the mollusk will inhale the net with all of its yummy goods caught inside.
The fish you can see in this picture is a Yellow-head Butterflyfish (Chaetodon xanthocephalus). These fish like to feed on small invertebrates as well as algae. This is one of the reasons why they like to visit your frame; they help keep your corals free from algal growth. This kind of Butterflyfish usually occurs on reefs with good coral growth (yayy that means our coral conservation project is successful). Adult Butterflyfish usually travel singularly or in pairs, while juveniles prefer to stay in larger groups in protected lagoons or reef flats … you know safety in numbers.
Coral reefs for the most part appear to be static environments, despite the presence of ever busy fish life, that is because most of the activities happening within corals are invisible to our eyes. In fact, coral reefs are a dynamic environment where every cm2 may hide beauty or a fight for survival! Among the invisible, corals are surely the most active, by building the amazing structure which allow us to see paradise tropical islands! However, they are continuously fighting for the survival, against predators, disease and environmental changes, and even between them. They are supplied with microscopic needles and venomous tentacles to kill any other corals and ejecting their stomach to digest them. The battle-zones when two different corals are easy to spot, there is often a cleared band between the two where they’ve killed each other off. They use similar tactics when they are fighting off invading algae. On healthy reefs, corals can maintain their territory, often beating back and even killing various types of algae. Here you will notice the two types ….
This is your 6 month frame progress update. Your frame is doing fantastic!
Looking at your frame, we can see lots of new growth, especially of the acropora corals (the branching & fast growing corals). We can see some of the corals are competing for space, which is a good problem to have, it means your frame is thriving. We can also see that your frame is contributing to the overall health of the coral ecosystem. We see lots of life such as little fish, crabs, worms and mollusks around your frame. Overall your frame has survived the warm months of March, April and May just fine, unfortunately some of the other frames in our colony weren’t so lucky.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing minor signs of bleaching of around 20%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching varies from fragment to fragment but can mainly be described as branching tip bleaching (where the tips are bleached), surface bleaching (mainly those parts exposed to the sun’s rays) and intermediate bleaching (pale in color due to decreased algae presence)
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Here you will see the partial shape of the cable tie that we used to stabilize this particular fragment to the iron frame. We can now see that this Acropora have started to overgrow these plastic ties and will soon be part of the skeleton forever. Plastic cable ties are a good compromise for attaching corals to the structure, since the material is cheap, resistant and the results are great, however we are looking into using different materials to improve our techniques of reducing plastics in the ocean. When this colony have reached the minimum size for spawning it will release its gametes in the water that ultimately leads to the formation of new colonies elsewhere on the reef
It is unfortunate to see that some coral frames are exposed to greater mortality compared to others mainly due to environmental factors, such as predation, high water temperature or diseases. Often times we see that broken fragments used for frame construction is not recovering due to prolonged stress from lying in the sediment and then exposed to the sun and human contact and as a result they slowly die and become covered with competing algae. In other cases, the fragments may also be heavily exposed to predation from a mollusk called Drupella spp. It is a corallivore species which feeds mainly on adult corals of Acropora genus. During our maintenance we remove the predators from the frames, although the result of their feeding is quite severe in some cases, in which case, the fragment is unlikely to survive. When we see a high number of dead fragments, we remove them completely and replace them with new ones.
The coral on your frame is thriving. The fragments attached at the beginning are growing very well. All the fragments of this digitate Acropora are now fusing together. We applied the micro-fusion technique that has been described by the Mote Marine Laboratory in Florida. In particular, when putting fragments of the same genotype close to each other they can stimulate the fusion of these fragments, speeding up their growth rate. When doing coral frame restoration or maintenance we usually apply this technique when we find a huge broken colony. We cut off small branches and then we attach them very close to each other as you can see here.
Here you will see the first view of your frame, together with other newly constructed frames located close to the Watervilla Restaurant. Some information about the fragments on your frame, most of them belong to the genus Acropora, which is a large and diverse group of hard corals with nearly 149 species described. These are well known to have a fast growth rate, between 13 and 15 cm every year, so we can expect a well grown artificial coral reef soon. We will keep monitoring the colonies and updating you on the status of your corals! Thank you for supporting this project!