Thank you for signing up to keep in touch with the Coral Conservation Project. Pictured above, you will find your coral frame as it was few days after construction. Your personal page will allow you to see more regular updates and amazing facts about the corals and animals living on your frame. By now having all the updates on one page, seeing the progress of your frame will be much easier and convenient. If you want to satisfy your curiosity even more, you can take a look at our Marine Blog Life and videos from the Marine Lab Diary or connect with us for more information.
Here is the start of a healthy coral reef relationship!
Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
Humans get a sun tan – corals become more colourful.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
What is biodiversity? Biodiversity is the variety of living species that can be found in a particular place, for instance the number of coral species on your coral frame. Coral reefs are said to have the highest biodiversity of any ecosystem on the planet—even more than a tropical rainforest. In this particular image you can see two species of the Acropora genus, one of the fastest growing species of coral. Since we collect broken fragments from the bottom and not original colonies, the biodiversity on the frames is often between 1 and 4 species of corals, depending on location of collection. You will see that these small pieces have already grown quite a bit in the one year since construction. Of course we always try to keep the diversity high between all of the frames and during maintenance we often add new pieces onto the frame. Hopefully soon we will see lots of different marine species occupying your frame, which is the goal of our Coral Conservation Project.
Looking at this species of Acropora on your frame, you will notice the white tips on the branches. When corals are stressed by changes in water conditions such as temperature, light intensity, or nutrients, they expel the symbiotic algae called Zooxanthellae, living inside their tissues, causing them to turn completely white, this is also known as coral bleaching. When a coral bleaches, it is not dead yet, but may soon starve if conditions persist, since the animals inside rely on this algae for its energy. If their stress levels are not severe, corals may recover. If the algae loss is prolonged and the stress continues, coral eventually dies. Here in the Maldives, the peak temperature is around March – June, when we also see some of the corals turn white, usually their colors return soon after if conditions don’t persist.
The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
Look who is protecting your coral frame … it’s a Dusky Gregory (Stegastes nigricans). These little fish are widespread in the Indo-Pacific and are commonly found in protected lagoons and harbors. These little fish (14cm long) make their home in rock beds or coral reefs and become fireclay protective over their home. While cleaning your coral frames, it commonly happens that I get charged by one of these little fish. When you listen closely, you can actually hear them snap and growl at intruders.
This is your 6 month frame progress update. Your frame is doing fantastic!
Looking at your frame, we can see lots of new growth, especially of the acropora corals (the branching & fast growing corals). We can see some of the corals are competing for space, which is a good problem to have, it means your frame is thriving. We can also see that your frame is contributing to the overall health of the coral ecosystem. We see lots of life such as little fish, crabs, worms and mollusks around your frame. Overall your frame has survived the warm months of March, April and May just fine, unfortunately some of the other frames in our colony weren’t so lucky.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing minor signs of bleaching of around 20%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame is not too serious as we only saw few fragments with “low levels” of symbiotic algae, meaning they are not as brightly colored as usual.
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
How do corals grow bigger? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
Acropora corals are among the most common genera of corlas in tropical reefs. Corals are composed of tiny individual polyps each that resembles an upside-down jellyfish with the mouth in the middle, surrounded by the tentacles. Here you can appreciate the tiny polyps in this picture. Furthermore, Acropora corals are called hexacorallia since each polyp has six, or multiples of six, tentacles. Such structures are used for hunting prey, microorganisms, but also used for defence. These tentacles are armed with unicellular weapon needle-like composed with a strong mix of toxins. Humans are not harmed by these toxins but it may cause inflammation along with some itching if touched.
Despite the protection given by the frames, everyone and everything is exposed to predators eventually! Jackfish or trevallies are among the most common predators patrolling the reef. They feed on reef fish and crustaceans. The juveniles inhabit sandy inshore protected areas while adults may be found in lagoons or protected and exposed reefs. Although the increasing pressure from fishing and recreational fishing activities persists, there is no sign of decline of the population according to the International Union of Conservation of Nature (IUCN). Unfortunately, the photo is a little out of focus since we were focused on the maintenance of the frame and not ready to capture this encounter, but we still think that this is a nice shot!