Thank you for signing up to keep in touch with the Coral Conservation Project. Pictured above, you will find your coral frame as it was few days after construction. Your personal page will allow you to see regular updates and amazing facts about the corals and animals living on your frame. By having all the updates on one page, you will be able to track the progress of your frame and see how your contribution is benefiting the ecosystem. If you want to satisfy your curiosity even more, you can take a look at our Marine Blog Life and videos from the Marine Lab Diary or connect with us for more information.
Here is the start of a healthy coral reef relationship!
Look at this amazing visitor to your frame! These are just a few of the species that would often visit the coral frames and are extremely helpful at times when cleaning the frames. This species is called the Moon Wrasse (Thalassoma lunare) a very typical and brightly colored species of fish found in the Maldives. It belongs to the wrasse family which consists of over 600 described species that range on average around 20 cm although the Humphead and Napoleon wrasse can grow up to 2 meters! They are carnivores by nature, feeding on a wide range of small invertebrates such as crabs or snails. Many smaller wrasses follow the feeding trails of larger fish, picking up invertebrates disturbed by their passing.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
Here you will see the partial shape of the cable tie that we used to stabilize this particular fragment to the iron frame. In one month we can already see that this Acropora have started to overgrow this plastic tie and will soon be part of the skeleton forever. Plastic cable ties are a good compromise for attaching corals to the structure, since the material is cheap, resistant and the results are great, however we are looking into using different materials to improve our techniques of reducing plastics in the ocean. When this colony have reached the minimum size for spawning it will release its gametes in the water that ultimately leads to the formation of new colonies elsewhere on the reef
Have you ever wondered how corals are eating and defending themselves … here you will see some small extensions/tentacles protruding from each of the polyp housings. They are referred to as the defensive/offensive stinging mechanisms similar to sweeper tentacles and are often linked to their feeding and defending. Inside each of the polyps are the small animals that look similar to an upside-down jellyfish with tentacles that surround the mouth part, depending on the coral species, the amount of tentacles may vary. They will move around to collect small particles floating in the water, usually plankton. These tentacles are also used for defending themselves against predators such as the coral eating snail, Drupella sp or the invasive Crown of Thorns Starfish. They also keep smaller predators such as crabs and invertebrates away. These tentacles are seldom seen, but do come out when they are feeling threatened or during feeding.
This is your 6 month frame progress update. Unfortunately your frame is struggling!
Looking at your frame, we can notice lots of bleached corals as well as dead coral fragments. Unfortunately the warm months of March, April and May have been really rough on your frame. We are trying our best to keep the damage to a minimum by cleaning harmful algae off bleached corals. We also started moving extremely bleached frames under the Water Villa Restaurant to protect them from further damage through UV radiation. We hope to see some of your bleached corals recover over the next couple of months, but it will be a slow process. Now that the water temperatures are slightly decreasing the next step of action will be to replace dead coral fragments with new healthy fragments.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We’ve had another very warm spring this year; March, April and May have been consistently warm and lead to a lot of coral bleaching on many of our frames as well as the house reef. Because your frame has been showing extreme signs of bleaching, we decided to move it into the shade. Your coral frame will be under the Water Villa Restaurant until we see your corals recover.
Research shows that corals can display bleaching from high temperatures but also that UV light can damage already stressed corals. This is one of the reasons we moved your frame out of the direct sun light and into the shade. Furthermore the temperatures in the shade are a little lower than the exposed sunny spot your frame used to call home.
Over the next couple of months it is one of our priorities to clean your frame frequently to minimize harmful algae from smothering your coral frame.
Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing minor signs of bleaching of around 15%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame varies from fragment to fragment and mostly range anything between minor bleaching on the branching tips and those bleached on the surface (those directly exposed to the sun’s rays) and some intermediate bleaching (still some symbiotic algae present but looking a little pale in color).
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Coral growth is a process that takes a very long time since corals invest a lot of energy in building their calcium carbonate skeleton. Stony corals (or scleractinians) are the corals primarily responsible for laying the foundations of, and building up, the reef structures. Massive reef structures are formed when each individual stony coral organism—or polyp—secretes a skeleton of calcium carbonate. Just after two months you can already appreciate how the coral have started to attach onto the steel frame. This is really good because it means that the coral is definitely still alive and growing. Lets see how much they will grow in the following months
Here you will see some fresh white scars on the tips of the branches that were recently broken off. Since collected fragments are picked up rather than broken down from existing colonies they often have dead sections covered with overgrowing algae and dead or damaged polyps, as such these sections are removed before fixing them to the frames for faster recovery. This white skeleton is the result of the calcium produced by the tiny polys above year after year and their color comes from the symbiotic algae called Zooxanthellae. Soon we will see the polyps growing over the white scar and restoring it to its former branching shape.
As you can see from your first post, we have already done the first maintenance on your frame which is to remove the cable ties and move the frame with the other frames. Some information about the fragments that we put on your frame, most of them belong to the genus Acropora which is one of the fastest growing corals and almost 149 species described. Over the next few months we will show you some close-up pictures of the fragments with some interesting facts and the creatures that now lives on your frame. After 6 months we will show you the progress of your frame in a new post.