The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
A fresh scar from a broken branch, the white indicate the calcium skeleton underneath that is produced by the tiny polys above year after year. Since collected fragments are picked up rather than broken down from existing colonies they often have dead sections covered with overgrowing algae and dead or damaged polyps, as such these sections are removed for faster recovery. You can already see the new polyps starting to grow along the bottom of the scar, soon the branch will regrow into its former state.
Some great news!!! Your frame seems to be an attraction for baby corals, such as the small coral colony in the picture. Most of the coral species reproduce by ejecting sperm and eggs in the water that subsequently merge and form planula larvae which can swim and is naturally attracted by chemical substances and light. After a couple of weeks, fertilized planulae larvae fall back to the ocean floor and attach themselves to a hard surface. An attached planula makes the metamorphosis into a coral polyp and begins to grow—dividing itself in half and making exact genetic copies of itself. As more and more polyps are added, a coral colony develops. Eventually, the coral colony becomes mature, begins reproducing, and the cycle of life continues.
In some unfortunate cases, much like we can see in nature, there are some dead fragments on your frame such as this one pictured. This is often the result when corals undergoes very high level of stress where they cannot seem to recover. This is not because your frame isn’t suitable, but since all the fragments were collected from the sand they already received lots of stress before attached onto your frame, so it happens from time to time that fragments might receive further high stress levels due to increased water temperatures and they lose the symbiotic algae Zooxanthellae that they need to survive. They will turn bleach white and if stress conditions persist they will die completely since they have no more animals for feeding or defending the corals and then they are often competing with invasive algae that grow over the polyps when this happens they will also die off. During the maintenance these pieces of dead coral is usually removed while the live part remains attached.
Do you know that even under the water we can found cobwebs? The responsible invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can be expand around the individual up to 10 cm in diameter. Under wave action and currents allow suspended particles to be trapped in these sticky nets that are withdrawn at regular intervals for consumption.
This is your 6 month frame progress update. Unfortunately your frame is struggling!
Looking at your frame, we can notice lots of bleached corals as well as dead coral fragments. Unfortunately the warm months of March, April and May have been really rough on your frame. We are trying our best to keep the damage to a minimum by cleaning harmful algae off bleached corals. We also started moving extremely bleached frames under the Water Villa Restaurant to protect them from further damage through UV radiation. We hope to see some of your bleached corals recover over the next couple of months, but it will be a slow process. Now that the water temperatures are slightly decreasing the next step of action will be to replace dead coral fragments with new healthy fragments.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing major signs of bleaching of around 50%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame varies from fragment to fragment and ranges anything between minor bleaching on the branching tips, surface bleaching (those directly exposed to the sun’s rays), intermediate bleaching (still some symbiotic algae present) and/or completely bleached. We have also noticed that there is some “glowing corals” on your frame.
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Look at this amazing visitor to your frame! These are just a few of the species that would often visit the coral frames and are extremely helpful at times when cleaning the frames. This species is called the Moon Wrasse (Thalassoma lunare) a very typical and brightly colored species of fish found in the Maldives. It belongs to the wrasse family which consists of over 600 described species that range on average around 20 cm although the Humphead and Napoleon wrasse can grow up to 2 meters! They are carnivores by nature, feeding on a wide range of small invertebrates such as crabs or snails. Many smaller wrasses follow the feeding trails of larger fish, picking up invertebrates disturbed by their passing.
Some great news!!! Your frame seems to be an attraction for baby corals, such as the small Pocillopora coral colony in the picture (small yellowish on the very left). Most of the coral species reproduce by ejecting sperm and eggs in the water that subsequently merge and form planula larvae which can swim and is naturally attracted by chemical substances and light. After a couple of weeks, fertilized planulae larvae fall back to the ocean floor and attach themselves to a hard surface. An attached planula makes the metamorphosis into a coral polyp and begins to grow—dividing itself in half and making exact genetic copies of itself. As more and more polyps are added, a coral colony develops. Eventually, the coral colony becomes mature, begins reproducing, and the cycle of life continues.
Have you ever wondered how corals are eating and defending themselves… look closely and you will see small extensions/tentacles at each of the polyps. They are referred to as the defensive/offensive stinging mechanisms similar to sweeper tentacles and often linked to their feeding and defending. Inside each of the polyps are the small animal that look similar to an upside-down jellyfish with tentacles that surrounds the mouth part. They will move around to collect anything that passes around in the water, usually small plankton where they will maneuver it towards their mouth where the food will be passed down. These tentacles are also used for defending themselves against predators such as parrotfish or other invader species such as crabs or small invertebrates. These tentacles are seldom seen which makes this a really amazing image
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
In a natural environment many organisms feeds on corals. For example, you can spot the shell of a corallivore mollusc (also known as Drupella sp) on the top-left side of the coral colony in the foreground. Feeding on corals is quite tricky, since the predator needs to develop a system to avoid the coral defence. In fact, corals use venomous stinging cells called “nematocysts” to inject a powerful mix of toxin in the skin of anything is touching them. Different corals have different toxins, more or less powerful. However, most of the coral predators have developed a resistance against the toxins that allows them to freely feed on them!