As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
Coral reefs are one of the most diverse systems on the planet, and sometimes corals can be new substrate for sessile gastropods, such as Ceraesignum maximum or otherwise known as an Operculate Worm Snail (Vermetidae, Mollusca). Individuals of C. maximum live in tubes embedded in the carbonate framework of the reef flat and secrete mucus nets extending ~10 cm around the individuals. The sticky nets billow under the turbulent action of impinging waves and indiscriminately trap suspended particles. The nets are withdrawn at regular intervals and consumed. In the picture it is visible the aperture of the tube, on an Acropora living on your frame.
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living in the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both of these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the Zooxanthellae, and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
Coral reefs for the most part appear to be static environments, despite the presence of ever busy fish life, that is because most of the activities happening within corals are invisible to our eyes. In fact, coral reefs are a dynamic environment where every cm2 may hide beauty or a fight for survival! Among the invisible, corals are surely the most active, by building the amazing structure which allow us to see paradise tropical islands! However, they are continuously fighting for the survival, against predators, disease and environmental changes, and even between them. They are supplied with microscopic needles and venomous tentacles to kill any other corals and ejecting their stomach to digest them. The battle-zones when two different corals are easy to spot, there is often a cleared band between the two where they’ve killed each other off. They use similar tactics when they are fighting off invading algae. On healthy reefs, corals can maintain their territory, often beating back and even killing various types of algae. Here you will notice the two types ….
Do you know that even under the water we can found cobwebs? The responsible invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can be expand around the individual up to 10 cm in diameter. Under wave action and currents allow suspended particles to be trapped in these sticky nets that are withdrawn at regular intervals for consumption.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing moderate signs of bleaching of around 35%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame is mainly described as surface bleaching where only those sides directly exposed to the suns’ rays are bleached as you can see from the images above.
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Coral reefs are one of the most diverse systems on the planet, and sometimes corals can be new substrate for sessile gastropods, such as Ceraesignum maximum (Vermetidae, Mollusca). Individuals of C. maximum live in tubes embedded in the carbonate framework of the reef flat and secrete mucus nets extending ~10 cm around the individuals. The sticky nets billow under the turbulent action of impinging waves and indiscriminately trap suspended particles. The nets are withdrawn at regular intervals and consumed. In the picture it is visible the aperture of the tube, on a Acropora living on your frame.
We would like to introduce the species Acropora robusta, which is growing massively on your coral frame. They are common in the central Indo-Pacific but it is feared that their populations are slowly decreasing. They are listed as least concern by the IUCN and also listed under Appendix ll of CITES (includes species not necessarily threatened with extinction, but in which trade must be controlled in order to avoid utilization incompatible with their survival). Colonies are often irregular in shape with an encrusting bases and thick conical branches in the middle, and with thinner horizontal branches with upturned ends at the ends. Branches from the central and peripheral part of the same colony have completely dissimilar shapes. This species is usually yellow-brown or cream in color, and common in the shallow reefs of the Indian Ocean, especially reef margins exposed to strong wave action.
In some unfortunate cases, much like we can see in nature, there are some dead fragments on your frame such as this one pictured. This is often the result when corals undergoes very high level of stress where they cannot seem to recover. This is not because your frame isn’t suitable, but since all the fragments were collected from the sand they already received lots of stress before attached onto your frame, so it happens from time to time that fragments might receive further high stress levels due to increased water temperatures and they lose the symbiotic algae Zooxanthellae that they need to survive. They will turn bleach white and if stress conditions persist they will die completely since they have no more animals for feeding or defending the corals and then they are often competing with invasive algae that grow over the polyps when this happens they will also die off. During the maintenance these pieces of dead coral is usually removed while the live (colored) part remains attached.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
Such a great diversity of corals on top of your frame!
In this picture we can count at least 5 different species of branching corals. Most of them were small broken fragments a year ago! Thanks to your support, today, they are healthy adult corals, ready for the reproduction to let the reef survive the current threats. Certainly, this is not the only solution to saving the coral reefs, this would include reducing the carbon-footprint instead, by reducing the use of fossil fuel. Even, to end the use of the single use plastic objects such as straws and plastic bags. However, we strongly believe that by seeing how amazing is the coral reef and useful for our life, we will act all together to preserve this incredible Mother Nature‘s creation.