Thank you for signing up to keep in touch with the Coral Conservation Project. Pictured above, you will find your coral frame as it was few days after construction. Your personal page will allow you to see more regular updates and amazing facts about the corals and animals living on your frame. By now having all the updates on one page, seeing the progress of your frame will be much easier and convenient. If you want to satisfy your curiosity even more, you can take a look at our Marine Blog Life and videos from the Marine Lab Diary or connect with us for more information.
Here is the start of a healthy coral reef relationship!
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
Do you know that even under the water we can find cobwebs? The invertebrate responsible for this mesh is not a spider, but rather a gastropod mollusk called Ceraesignum maximum. As all Vermeidae, this mollusk species is sessile and houses themselves within tubular shells. They are common dwellers of shallow water in coral reefs and rocky shores. These nets are called mucus nets that can expand around the individual up to 10 cm in diameter. Waves and currents fill the net with tiny particles. After a few hours the mollusk will inhale the net with all of its yummy goods caught inside.
What is biodiversity? Biodiversity is the variety of living species that can be found in a particular place, for instance the number of coral species on your coral frame. Coral reefs are said to have the highest biodiversity of any ecosystem on the planet—even more than a tropical rainforest. In this particular image you can see two species of the Acropora genus, one of the fastest growing species of coral. Since we collect broken fragments from the bottom and not original colonies, the biodiversity on the frames is often between 1 and 4 species of corals, depending on location of collection. You will see that these small pieces have already grown quite a bit in the one year since construction. Of course we always try to keep the diversity high between all of the frames and during maintenance we often add new pieces onto the frame. Hopefully soon we will see lots of different marine species occupying your frame, which is the goal of our Coral Conservation Project.
Looking at this species of Acropora on your frame, you will notice the white tips on the branches. When corals are stressed by changes in water conditions such as temperature, light intensity, or nutrients, they expel the symbiotic algae called Zooxanthellae, living inside their tissues, causing them to turn completely white, this is also known as coral bleaching. When a coral bleaches, it is not dead yet, but may soon starve if conditions persist, since the animals inside rely on this algae for its energy. If their stress levels are not severe, corals may recover. If the algae loss is prolonged and the stress continues, coral eventually dies. Here in the Maldives, the peak temperature is around March – June, when we also see some of the corals turn white, usually their colors return soon after if conditions don’t persist.
Have you ever wondered how corals are eating and defending themself… here you will see some small extensions/tentacles protruding from each of the polyp housings. They are referred to as the defensive/offensive stinging mechanisms similar to sweeper tentacles and are often linked to their feeding and defending. Inside each of the polyps are the small animal that look similar to an upside-down jellyfish with tentacles that surrounds the mouth part, depending on the coral species, the amount of tentacles may vary. They will move around to collect anything that passes around in the water, usually small plankton where after they will maneuver it towards their mouth where the food will digested and passed down. These tentacles are also used for defending themselves against predators such as the coral eating snail, Drupella sp or the invasive Crown of Thorns Starfish. They also keep the smaller predators such as crabs or invertebrates away. These tentacles are seldom seen but do come out when they are feeling threatened or when they are feeding.
Look at this amazing visitor to your frame! These are just a few of the species that would often visit the coral frames and are extremely helpful at times when cleaning the frames. This species is called the Moon Wrasse (Thalassoma lunare) a very typical and brightly colored species of fish found in the Maldives. It belongs to the wrasse family which consists of over 600 described species that range on average around 20 cm although the Humphead and Napoleon wrasse can grow up to 2 meters! They are carnivores by nature, feeding on a wide range of small invertebrates such as crabs or snails. Many smaller wrasses follow the feeding trails of larger fish, picking up invertebrates disturbed by their passing.
This is your 6 month frame progress update. Your frame is doing fantastic!
Looking at your frame, we can see lots of new growth, especially of the acropora corals (the branching & fast growing corals). We can see some of the corals are competing for space, which is a good problem to have, it means your frame is thriving. We can also see that your frame is contributing to the overall health of the coral ecosystem. We see lots of life such as little fish, crabs, worms and mollusks around your frame. Overall your frame has survived the warm months of March, April and May just fine, unfortunately some of the other frames in our colony weren’t so lucky.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
Have you ever wondered why some corals are more colorful than others… That is because some corals increase the production of colourful protein pigments (such as these purple tips) when they are exposed to more intense sunlight and this colony, of a branching Acropora, is simply amazing. Scientist have found that these pink, blue and/or purple proteins act as sunscreens for the corals by removing substantial light components that might otherwise become harmful to the algae hosted in their tissue. Corals rely on these light-dependent miniature plants, the so-called zooxanthellae, since they provide a substantial amount of food. Furthermore, these tips consist of a particular polyp called an “apical polyp”. It is responsible of the growth of the particular branch. For instance, it will reproduce asexually by cloning itself, potentially an infinite number of times throughout its lifetime. Here and there, one of the “radial polyps” will differentiate becoming a new apical polyp with its distinguished purple color, driving the growth of a new branch.
Humans get a sun tan – corals become more colourful.
Despite the protection given by the frames, everyone and everything is exposed to predators eventually! Jackfish or trevallies are among the most common predators patrolling the reef. They feed on reef fish and crustaceans. The juveniles inhabit sandy inshore protected areas while adults may be found in lagoons or protected and exposed reefs. Although the increasing pressure from fishing and recreational fishing activities persists, there is no sign of decline of the population according to the International Union of Conservation of Nature (IUCN). Unfortunately, the photo is a little out of focus since we were focused on the maintenance of a frame and not ready to capture this encounter, but we still think that this is a nice shot!
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
Looking at your frame, we can often see these “black mats” forming on the frame or on the corals, in this case, the steel bar to the left. This is commonly known as red slime algae, also frequently found in aquariums. This in fact is not algae, but rather an oxy-photosynthetic bacterium which have dominated marine environments for more than three million years, commonly known as cyanobacteria. Usually corals can prevent algal settlement on the live tissue, however newly settled recruits or broken fragments and juveniles seem to be the most vulnerable due to their small size and vulnerability to physio-logical challenges. Tissue death can often follow due to the exposure of hypoxic, sulfide-rich microenvironments that is associated with this bacterium. During frame maintenance we remove these with a toothbrush to minimize any association with the fragments.
We would like to give some information about this colony of Acropora digitifera that lives on your coral frame. This species forms digitate colonies; the branches may be 1 cm in diameter and up to 10 cm long. This species strongly prefers shallow water. It is usually cream or light brown in color with blue branch tips, but can also be brown with purple tips. It is common near reef crests’ as it prefers strong water movement and it is very common in the Maldives. The most important known threat is the reduction of coral reef habitat due to bleaching, disease and predation. However, it seems to be strong enough to resist to habitat loss more than other species of corals. However, since the current situation with multiple stresses (mainly rising temperature of the ocean) acting simultaneously the species is considered Near Threatened by the International Union for Conservation of Nature (IUCN).
Relationships with beneficial consequences between different species such as mutualism or commensalism are common in the coral reefs. In this photo, we would like to show you an important association that has been recently discovered by the team of researchers from the University of Milan-Bicocca. It refers to tiny hairy-looking animals living on the surface of corals called Hydrozoans belonging to the genus Zanclea. Indeed, it seems that they have an important role for the protection of the corals since they also have powerful toxin that may represent a strong defense against predators.