Thank you for signing up to keep in touch with the Coral Conservation Project. Pictured above, you will find your coral frame as it was few days after construction. Your personal page will allow you to see regular updates and amazing facts about the corals and animals living on your frame. By having all the updates on one page, you will be able to track the progress of your frame and see how your contribution is benefiting the ecosystem. If you want to satisfy your curiosity even more, you can take a look at our Marine Blog Life and videos from the Marine Lab Diary or connect with us for more information.
Here is the start of a healthy coral reef relationship!
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
A fresh scar from a broken branch, the white indicate the calcium skeleton underneath that is produced by the tiny polys above year after year. Since collected fragments are picked up rather than broken down from existing colonies they often have dead sections covered with overgrowing algae and dead or damaged polyps, as such these sections are removed for faster recovery. You can already see the new polyps starting to grow along the bottom of the scar, soon the branch will regrow into its former state.
This fun looking creature is indeed a sea snail. You might wonder where its house is … it is hidden below its black/ dark blue velvety mantle that makes this nail look more like a slug or a nudibranch. Underwater the sea snail (Coriocell hibyae) is often difficult to spot and resembles more a sponge than a moving animal. This snail is known from the Maldives, but might be found throughout the Indian Ocean (not much is known about its true distribution).
This species can reach a maximum size of 10 cm in length and it has five digit-like protrusions on its dorsal side. The body coloration varies from slate-blue to dark brown, with some small round black spots which are part of what makes it look like a sponge. A fragile ear-shaped shell is hidden inside the fleshy mantle.
This little snail prefers water temperatures of (23°C – 27°C) and mainly feeds on sea squirts (Didendum molle) which can also be found on your frame.
This is your 6 month frame progress update. Your frame is doing fantastic!
Looking at your frame, we can see lots of new growth, especially of the acropora corals (the branching & fast growing corals). We can see some of the corals are competing for space, which is a good problem to have, it means your frame is thriving. We can also see that your frame is contributing to the overall health of the coral ecosystem. We see lots of life such as little fish, crabs, worms and mollusks around your frame. Overall your frame has survived the warm months of March, April and May just fine, unfortunately some of the other frames in our colony weren’t so lucky.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
We’ve had another very warm spring this year; March, April and May have been consistently warm and lead to a lot of coral bleaching on many of our frames as well as the house reef. Because your frame has been showing extreme signs of bleaching, we decided to move it into the shade. Your coral frame will be under the Water Villa Restaurant until we see your corals recover.
Research shows that corals can display bleaching from high temperatures but also that UV light can damage already stressed corals. This is one of the reasons we moved your frame out of the direct sun light and into the shade. Furthermore the temperatures in the shade are a little lower than the exposed sunny spot your frame used to call home.
Over the next couple of months it is one of our priorities to clean your frame frequently to minimize harmful algae from smothering your coral frame.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing moderate signs of bleaching of around 30%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame varies from fragment to fragment and mostly range anything between minor bleaching on the branching tips and those bleached on the surface (those directly exposed to the sun’s rays) and some intermediate bleaching (still some symbiotic algae present but looking a little pale in color). We have also noticed that there is some “glowing corals” on your frame. Corals produce a fluorescent chemical which act like sunscreen to protect them against increasing heated waters caused by climate change and as a result produce the most vivid colors, although spectacular to look at, this is the ultimate warning that our oceans are in trouble.
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Here we would like to give some information about this nice looking Pocillopora meandrina branches collected from a broken colony that is located on your coral frame. They are also known as the cauliflower coral and are quite common around the Maldives. Pocillopora meandrina occurs on shallow reefs and amongst coral communities on rocky reefs, at depth from 3-27 m and their radiating branches can reach up to 40 cm in diameter. In this species many or most of the branches are flattened on the ends and some may be curved and their colors may vary from cream, green or pink. Pocilloporid corals, not excluding P. meandrina, are generally amongst the strongest coral competitors with relatively high rates of calcification. However, coral species exhibiting high rates of calcification usually have relatively high mortality rates
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Welcome to the very first post on your frame, as you can see it is looking really good. As you can see from the image, we have already done the first maintenance on your frame which is to remove the additional cable ties and move the frame with the other frames to create a new coral reef. Some information about the fragments that we put on your frame, most of them belong to the genus Acropora which is one of the fastest growing corals and almost 149 species described but we have also added some species of Pocillopora to increase the general biodiversity. Over the next few months we will show you some close-up pictures of the fragments on your frame with some interesting facts about them, we often find some cool creatures living here too. After 6 months we will show you the progress of your frame with another overall picture in a brand new post.