Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
What is biodiversity? Biodiversity is the variety of living species that can be found in a particular place, for instance the number of coral species on your coral frame. Coral reefs are said to have the highest biodiversity of any ecosystem on the planet—even more than a tropical rainforest. In this particular image you can see two species of the Acropora genus, one of the fastest growing species of coral. Since we collect broken fragments from the bottom and not original colonies, the biodiversity on the frames is often between 1 and 4 species of corals, depending on location of collection. You will see that these small pieces have already grown quite a bit in the one year since construction. Of course we always try to keep the diversity high between all of the frames and during maintenance we often add new pieces onto the frame. Hopefully soon we will see lots of different marine species occupying your frame, which is the goal of our Coral Conservation Project.
Check out this intriguing creature we found on your coral frame… this is called a hermit crab, one of the 1110 species found today, so we cannot be too sure about the specific species. These specific groups of animals are called marine hermit crabs and they spend most of their life underwater. Most species have long, spirally curved abdomens which are soft, unlike their calcified relatives. This soft abdomen is protected from predators by a salvaged empty seashells usually abandoned by other gastropods. Often times they will use the shells of sea snails or other hermit crabs. Like all hermit crabs, as they grow bigger, they require bigger shells and often times when resources are limited there can be some competition between crabs for new shells. Their diets consist of algae and plankton but they are also omnivorous and depend on a reasonable amount of scavenging. They find the easiest ways to collect the plankton is by utilizing their claws to guide food into their mouths and suck in anything that is within reach.
The Dascyllus aruanus, known commonly as humbug damselfish, has found in your coral frame its home. This particular fish is known by multiple common names, such as three stripe damselfish, humbug dascyllus, or black and white damselfish. They only reach an adult size of 3-4 inches (7.6-10 cm). Sporting three broad black stripes on a white body, the humbug damselfish has a zebra like appearance. The stripes run slightly off vertical through the eyes and mouth, midbody and bisecting the caudal peduncle, making it half black and half white. There are several contestants for the title of most important reef fish family, but the Damselfish are certainly one of the front-runners. Not only are there numerous species, but also many of these species are present on Maldivian reefs in prodigious numbers. The humbug damselfish that you can see in the picture is associated with isolated coral heads in sheltered inshore habitats. Like all damselfish, they can be territorial and aggressive, especially as they get older.
This is your 6 month frame progress update. Unfortunately your frame is struggling!
Looking at your frame, we can notice lots of bleached corals as well as dead coral fragments. Unfortunately the warm months of March, April and May have been really rough on your frame. We are trying our best to keep the damage to a minimum by cleaning harmful algae off bleached corals. We also started moving extremely bleached frames under the Water Villa Restaurant to protect them from further damage through UV radiation. We hope to see some of your bleached corals recover over the next couple of months, but it will be a slow process. Now that the water temperatures are slightly decreasing the next step of action will be to replace dead coral fragments with new healthy fragments.
Over the following months we will continue with maintenance to keep harmful algae and predators off your frame and to give your frame the best chance for successful growth.
Have you ever wondered how do corals grow bigger or how their branches are getting longer? Coral reefs are mainly built by stony or hard corals, together with their endosymbiotic algae (algae living into the corals), zooxanthellae. To give you some information on how the calcification process works. The main elements needed to build the skeleton are Ca2+ (Calcium ions) and DIC (Dissolved Inorganic Carbon). Both these elements are transported into a specific area of the coral called the “calcifying region”, which is situated under each single polyp. Here, the calcium carbonate (CaCO3) is formed throughout a chemical reaction. Finally, the calcium carbonate (or technically crystals of aragonite) is deposited to form the skeleton. The process involves the polyp’s cells and the zooxanthellae and by the mutualistic work of these two counterparts the skeleton is formed. However, if for any reasons (i.e. high temperature) one of the two parts is not working properly the process stops and the coral may die.
We have some unfortunate news this month as we are starting to see some evidence of bleaching around the coral frames. Coral bleaching can be ascribed to warming ocean waters for extended periods of time where the symbiotic algae (Zooxanthellae) living inside the tissue coral is expelled by their host and in turn leave behind a bleaching white skeleton. This algae shares a mutualistic relationship with the corals; the coral provides shelter to the algae and in turn the algae can provide as much as 90% of the nutrients produced by photosynthesis which is used towards their growth. Corals can survive bleaching events such as this, but if they are subject to more stress or prolonged heated waters, they will surely die. Unfortunately, your frame is also showing major signs of bleaching of around 80%. This is a rough estimate based on the amount of bleaching fragments of the entire frame. As you can see from the images, their white skeletons are not something anyone can miss, especially in the water. The degree of bleaching on your frame varies from fragment to fragment and ranges anything between minor bleaching on the branching tips, surface bleaching (those directly exposed to the sun’s rays), intermediate bleaching (still some symbiotic algae present) and/or completely bleached.
Unfortunately, there is not much we can do at this stage, but wait to see whether they recover or not in the next months. Should they not recover and they are completely dead, they will be removed from the frame and replaced with new live ones. This is of course a major setback for our coral conservation project, but it is also the reality we are dealing with today.
Coral reefs are one of the most diverse systems on the planet, and sometimes corals can be new substrate for sessile gastropods, such as Ceraesignum maximum (Vermetidae, Mollusca). Individuals of C. maximum live in tubes embedded in the carbonate framework of the reef flat and secrete mucus nets extending ~10 cm around the individuals. The sticky nets billow under the turbulent action of impinging waves and indiscriminately trap suspended particles. The nets are withdrawn at regular intervals and consumed. In the picture it is visible the aperture of the tube, on a Acropora living on your frame.
Here you can see the outline shape of the cable tie that we used to stabilize this particular fragment to the iron frame, it is hardly recognizable and has now become part of the skeleton of the coral fragment. Plastic cable ties are a good compromise for attaching corals to the structure, since the material is cheap, resistant and the results are great as you can see, however we are looking into using different materials to improve our techniques of reducing plastics in the ocean. Soon this colony will reach the minimum size for spawning and will release its gametes in the water that ultimately leads to the formation of new colonies elsewhere on the reef.
In some unfortunate cases, much like we can see in nature, there are some dead fragments on your frame such as this one pictured. This is often the result when corals undergoes very high level of stress where they cannot seem to recover. This is not because your frame isn’t suitable, but since all the fragments were collected from the sand they already received lots of stress before attached onto your frame, so it happens from time to time that fragments might receive further high stress levels due to increased water temperatures and they lose the symbiotic algae Zooxanthellae that they need to survive. They will turn bleach white and if stress conditions persist they will die completely since they have no more animals for feeding or defending the corals and then they are often competing with invasive algae that grow over the polyps when this happens they will also die off. During the maintenance these pieces of dead coral is usually removed while the live part remains attached.
Looking at your frame, you will see that it is doing amazing and the corals are really growing well since the last update even after the heated months and some stormy weather. We have done some recent maintenance on all the frames which include cleaning them, removing the invasive algae and coral predators to maximize growth. In the upcoming post we will show you close-ups of your frame and the coral fragments, with some interesting facts and findings about those that are on your frame. After 6 months you will see a similar post showing once again the progress of your frame.
This fish is a beautiful visitor to your coral frame, swimming here and there, also visiting other frames and eating algae. However, hidden under their beautiful colors, there is a powerful weapon, this black-Saddled toby fish (Canthigaster valentini) is part of the pufferfish family and has a venomous protein, the tetrodotoxin. This is a strong neurotoxin that acts on neurons of the victim; it prevents the nervous system from carrying messages to the muscles, making the victim paralyzed. It is well known by predators who avoid the beautiful lethal meal. Other species that also carry this toxin includes the porcupinefish, ocean sunfish and triggerfish.