Thank you for signing up to keep in touch with the Coral Conservation Project. Pictured above, you will find your coral frame as it was few days after construction. Your personal page will allow you to see regular updates and amazing facts about the corals and animals living on your frame. By having all the updates on one page, you will be able to track the progress of your frame and see how your contribution is benefiting the ecosystem. If you want to satisfy your curiosity even more, you can take a look at our Marine Blog Life and videos from the Marine Lab Diary or connect with us for more information.
Here is the start of a healthy coral reef relationship!
As you can see from the picture, your coral frame are colonized by some little, brown and green organisms called Ascidia. The species is called Didemnum molle (also known as the green barrel sea squirt or the green reef sea-squirt.) and is very common in the Indo-Pacific area. Ascidia is a filter-feeder, feeding on suspended plankton and detritus and its green color is given by the algae living in symbiosis with them, in this way the algae is protected by the predation and the Ascidia can receive energy from its little hosts. Luckily they don’t possess any threat to the corals when they are few in numbers, however they can colonize quite quickly on the frames through asexual budding, as such they are regularly removed to minimize competition with growing corals.
Coral reefs are built and made up of thousands of tiny animals called coral “polyps” that can live individually (like many mushroom corals do) or in large colonies that comprise an entire reef structure. A polyp has a sac-like body and an opening, or mouth, encircled by stinging tentacles called nematocysts or cnidae (imagine an upside down jellyfish). The polyp extracts calcium and carbonate ions from seawater to build itself a hard, cup-shaped skeleton made of calcium carbonate (limestone). This limestone skeleton protects the soft, delicate body of the polyp. Coral polyps are usually nocturnal, meaning that they stay inside their skeletons during the day. At night, polyps extend their tentacles to feed. Most coral polyps have clear bodies whereas their skeletons are completely white, like human bones. Generally, their brilliant color comes from the zooxanthellae (tiny algae) living inside their tissues. Several million zooxanthellae live and produce pigments in just one square inch of coral. These pigments are visible through the clear body of the polyp and are what gives coral its beautiful color.
Here you will see the partial shape of the cable tie that we used to stabilize this particular fragment to the iron frame. In one month we can already see that this Acropora have started to overgrow this plastic tie and will soon be part of the skeleton forever. Plastic cable ties are a good compromise for attaching corals to the structure, since the material is cheap, resistant and the results are great, however we are looking into using different materials to improve our techniques of reducing plastics in the ocean. When this colony have reached the minimum size for spawning it will release its gametes in the water that ultimately leads to the formation of new colonies elsewhere on the reef
As you can see from your first post, we have already done the first maintenance on your frame which is to remove the ad cable ties and move the frame with the other frames. Some information about the fragments that we put on your frame, most of them belong to the genus Acropora which is one of the fastest growing corals and almost 149 species described. Over the next few months we will show you some close-up pictures of the fragments with some interesting facts and the creatures that now lives on your frame. After 6 months we will show you the progress of your frame in a new post.